3.130 \(\int \frac{(e \tan (c+d x))^{7/2}}{(a+a \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=281 \[ -\frac{2 e^4 \sqrt{\sin (2 c+2 d x)} \sec (c+d x) \text{EllipticF}\left (c+d x-\frac{\pi }{4},2\right )}{a^2 d \sqrt{e \tan (c+d x)}}-\frac{e^{7/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d}+\frac{e^{7/2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}+1\right )}{\sqrt{2} a^2 d}+\frac{2 e^3 \sqrt{e \tan (c+d x)}}{a^2 d}-\frac{e^{7/2} \log \left (\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} a^2 d}+\frac{e^{7/2} \log \left (\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} a^2 d} \]

[Out]

-((e^(7/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*a^2*d)) + (e^(7/2)*ArcTan[1 + (Sqrt[2]
*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*a^2*d) - (e^(7/2)*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*Sqrt[
e*Tan[c + d*x]]])/(2*Sqrt[2]*a^2*d) + (e^(7/2)*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] + Sqrt[2]*Sqrt[e*Tan[c + d*x
]]])/(2*Sqrt[2]*a^2*d) - (2*e^4*EllipticF[c - Pi/4 + d*x, 2]*Sec[c + d*x]*Sqrt[Sin[2*c + 2*d*x]])/(a^2*d*Sqrt[
e*Tan[c + d*x]]) + (2*e^3*Sqrt[e*Tan[c + d*x]])/(a^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.378175, antiderivative size = 281, normalized size of antiderivative = 1., number of steps used = 19, number of rules used = 15, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.6, Rules used = {3888, 3886, 3476, 329, 211, 1165, 628, 1162, 617, 204, 2614, 2573, 2641, 2607, 32} \[ -\frac{e^{7/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d}+\frac{e^{7/2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}+1\right )}{\sqrt{2} a^2 d}+\frac{2 e^3 \sqrt{e \tan (c+d x)}}{a^2 d}-\frac{e^{7/2} \log \left (\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} a^2 d}+\frac{e^{7/2} \log \left (\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}+\sqrt{e}\right )}{2 \sqrt{2} a^2 d}-\frac{2 e^4 \sqrt{\sin (2 c+2 d x)} \sec (c+d x) F\left (\left .c+d x-\frac{\pi }{4}\right |2\right )}{a^2 d \sqrt{e \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(e*Tan[c + d*x])^(7/2)/(a + a*Sec[c + d*x])^2,x]

[Out]

-((e^(7/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*a^2*d)) + (e^(7/2)*ArcTan[1 + (Sqrt[2]
*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*a^2*d) - (e^(7/2)*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*Sqrt[
e*Tan[c + d*x]]])/(2*Sqrt[2]*a^2*d) + (e^(7/2)*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] + Sqrt[2]*Sqrt[e*Tan[c + d*x
]]])/(2*Sqrt[2]*a^2*d) - (2*e^4*EllipticF[c - Pi/4 + d*x, 2]*Sec[c + d*x]*Sqrt[Sin[2*c + 2*d*x]])/(a^2*d*Sqrt[
e*Tan[c + d*x]]) + (2*e^3*Sqrt[e*Tan[c + d*x]])/(a^2*d)

Rule 3888

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[a^(2*n
)/e^(2*n), Int[(e*Cot[c + d*x])^(m + 2*n)/(-a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && E
qQ[a^2 - b^2, 0] && ILtQ[n, 0]

Rule 3886

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandI
ntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 2614

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[e + f*x]]/(Sqrt[Co
s[e + f*x]]*Sqrt[b*Tan[e + f*x]]), Int[1/(Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]]), x], x] /; FreeQ[{b, e, f}, x
]

Rule 2573

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[Sqrt[Sin[2*
e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]), Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b,
e, f}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2607

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin{align*} \int \frac{(e \tan (c+d x))^{7/2}}{(a+a \sec (c+d x))^2} \, dx &=\frac{e^4 \int \frac{(-a+a \sec (c+d x))^2}{\sqrt{e \tan (c+d x)}} \, dx}{a^4}\\ &=\frac{e^4 \int \left (\frac{a^2}{\sqrt{e \tan (c+d x)}}-\frac{2 a^2 \sec (c+d x)}{\sqrt{e \tan (c+d x)}}+\frac{a^2 \sec ^2(c+d x)}{\sqrt{e \tan (c+d x)}}\right ) \, dx}{a^4}\\ &=\frac{e^4 \int \frac{1}{\sqrt{e \tan (c+d x)}} \, dx}{a^2}+\frac{e^4 \int \frac{\sec ^2(c+d x)}{\sqrt{e \tan (c+d x)}} \, dx}{a^2}-\frac{\left (2 e^4\right ) \int \frac{\sec (c+d x)}{\sqrt{e \tan (c+d x)}} \, dx}{a^2}\\ &=\frac{e^4 \operatorname{Subst}\left (\int \frac{1}{\sqrt{e x}} \, dx,x,\tan (c+d x)\right )}{a^2 d}+\frac{e^5 \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (e^2+x^2\right )} \, dx,x,e \tan (c+d x)\right )}{a^2 d}-\frac{\left (2 e^4 \sqrt{\sin (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{\sin (c+d x)}} \, dx}{a^2 \sqrt{\cos (c+d x)} \sqrt{e \tan (c+d x)}}\\ &=\frac{2 e^3 \sqrt{e \tan (c+d x)}}{a^2 d}+\frac{\left (2 e^5\right ) \operatorname{Subst}\left (\int \frac{1}{e^2+x^4} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{a^2 d}-\frac{\left (2 e^4 \sec (c+d x) \sqrt{\sin (2 c+2 d x)}\right ) \int \frac{1}{\sqrt{\sin (2 c+2 d x)}} \, dx}{a^2 \sqrt{e \tan (c+d x)}}\\ &=-\frac{2 e^4 F\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sec (c+d x) \sqrt{\sin (2 c+2 d x)}}{a^2 d \sqrt{e \tan (c+d x)}}+\frac{2 e^3 \sqrt{e \tan (c+d x)}}{a^2 d}+\frac{e^4 \operatorname{Subst}\left (\int \frac{e-x^2}{e^2+x^4} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{a^2 d}+\frac{e^4 \operatorname{Subst}\left (\int \frac{e+x^2}{e^2+x^4} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{a^2 d}\\ &=-\frac{2 e^4 F\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sec (c+d x) \sqrt{\sin (2 c+2 d x)}}{a^2 d \sqrt{e \tan (c+d x)}}+\frac{2 e^3 \sqrt{e \tan (c+d x)}}{a^2 d}-\frac{e^{7/2} \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{e}+2 x}{-e-\sqrt{2} \sqrt{e} x-x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d}-\frac{e^{7/2} \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{e}-2 x}{-e+\sqrt{2} \sqrt{e} x-x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d}+\frac{e^4 \operatorname{Subst}\left (\int \frac{1}{e-\sqrt{2} \sqrt{e} x+x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 a^2 d}+\frac{e^4 \operatorname{Subst}\left (\int \frac{1}{e+\sqrt{2} \sqrt{e} x+x^2} \, dx,x,\sqrt{e \tan (c+d x)}\right )}{2 a^2 d}\\ &=-\frac{e^{7/2} \log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d}+\frac{e^{7/2} \log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d}-\frac{2 e^4 F\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sec (c+d x) \sqrt{\sin (2 c+2 d x)}}{a^2 d \sqrt{e \tan (c+d x)}}+\frac{2 e^3 \sqrt{e \tan (c+d x)}}{a^2 d}+\frac{e^{7/2} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d}-\frac{e^{7/2} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d}\\ &=-\frac{e^{7/2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d}+\frac{e^{7/2} \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{e \tan (c+d x)}}{\sqrt{e}}\right )}{\sqrt{2} a^2 d}-\frac{e^{7/2} \log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)-\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d}+\frac{e^{7/2} \log \left (\sqrt{e}+\sqrt{e} \tan (c+d x)+\sqrt{2} \sqrt{e \tan (c+d x)}\right )}{2 \sqrt{2} a^2 d}-\frac{2 e^4 F\left (\left .c-\frac{\pi }{4}+d x\right |2\right ) \sec (c+d x) \sqrt{\sin (2 c+2 d x)}}{a^2 d \sqrt{e \tan (c+d x)}}+\frac{2 e^3 \sqrt{e \tan (c+d x)}}{a^2 d}\\ \end{align*}

Mathematica [F]  time = 3.87051, size = 0, normalized size = 0. \[ \int \frac{(e \tan (c+d x))^{7/2}}{(a+a \sec (c+d x))^2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(e*Tan[c + d*x])^(7/2)/(a + a*Sec[c + d*x])^2,x]

[Out]

Integrate[(e*Tan[c + d*x])^(7/2)/(a + a*Sec[c + d*x])^2, x]

________________________________________________________________________________________

Maple [C]  time = 0.259, size = 653, normalized size = 2.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*tan(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x)

[Out]

-1/2/a^2/d*2^(1/2)*(I*sin(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1/2*2^(1/2)
)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/
sin(d*x+c))^(1/2)-I*sin(d*x+c)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*
((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(d*x+c)+sin(d*x+c))/si
n(d*x+c))^(1/2)+sin(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((
1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2-1/2*I,1
/2*2^(1/2))+sin(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-co
s(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2
^(1/2))-6*sin(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((1-cos(
d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticF(((1-cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-2*cos
(d*x+c)*2^(1/2)+2*2^(1/2))*(-1+cos(d*x+c))*cos(d*x+c)^3*(cos(d*x+c)+1)^2*(e*sin(d*x+c)/cos(d*x+c))^(7/2)/sin(d
*x+c)^7

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))**(7/2)/(a+a*sec(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e \tan \left (d x + c\right )\right )^{\frac{7}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((e*tan(d*x + c))^(7/2)/(a*sec(d*x + c) + a)^2, x)